QUESTION OF THE WEEK

The Amateur Exam Explained: Potential Dividers

Max Townend G4SDX
Halifax \& District ARS

WHAT IS A POTENTIAL DIVIDER?
DOWN the
Ladder from
+12 V Ve
Down
MORE

Zero Volts (-Ve)

$4 / 12=1 / 3$
I need the RATIO of the Rungs

$$
4 / 8+4
$$

A ‘REAL WORLD’ POTENTIAL DIVIDER ..

$$
V 2=(R 2 / R 1+R 2) \times V 1
$$

Plug in the NUMBERS

$$
\begin{gathered}
\mathrm{V} 2=(4 / 8+4) \times 12 \mathrm{~V} \\
\mathrm{~V} 2=4 / 12 \times 12 \mathrm{~V} \\
\mathrm{~V} 2=1 / 3 \times 12 \mathrm{~V} \\
\mathrm{~V} 2=4 \mathrm{~V}
\end{gathered}
$$

NO COMPONENT IS PERFECT - IT HAS ‘TOLERANCE’

HAVE WE UNDERSTOOD THE QUESTION?

The drawing shows an FET cigcuit biased by R1 and R2 R1 is $80 \mathrm{k} \Omega$ and R2 is $20 \mathrm{k} \Omega$. Both resistors are 10% tolerance. The bias voltage might be lower than its design value by a maximum of

A. 180 mV
A. 180 mV
B. 100 mV
C. 300 mV
D. 200 mV .

$$
V 2=R 2 / R 1+R 2 \times V 1
$$

The first thing to notice about this question is the level of irrelevant 'Clutter' that has been introduced by the examiner. FOCUS ON WHAT IS BEING ASKED!

This is A SIMPLE question about a POTENTIAL DIVIDER and what happens to the VOLTAGE if the value of the resistors are affected by the MANUFACTURING TOLERANCE

SIMPLIFY THE DIAGRAM AND THE PROBLEM

Start by assuming the resistors are PERFECT and
EXACTLY the value the designer intended
Make sure the RESISTOR VALUES are all specified in the SAME UNITS - Ohm, K $\Omega, M \Omega$, etc. It is the RATIO of the Values we need, and ONLY the RATIO

Plug in the NUMBERS

$$
\begin{gathered}
\mathrm{V} 2=20 \mathrm{~K} / 20 \mathrm{~K}+80 \mathrm{~K} \times 10 \\
\mathrm{~V} 2=20 / 100 \times 10 \\
\mathrm{~V} 2=0.2 \times 10 \\
\mathrm{~V} 2=2 \mathrm{~V}
\end{gathered}
$$

TOLERANCE AND THE POTENTIAL DIVIDER..

Understand that in a POTENTIAL DIVIDER, if R1 goes UP, V3 goes UP and V2 goes DOWN - It balances like a SEE-SAW

The WORST CASE for the Designer would be if R1 went UP by its MAXIMUM TOLERANCE and R2 went DOWN by its MAXIMUM TOLERANCE (remember the QUESTION)
Worst Case for R1 Would be $80 \mathrm{~K}+10 \%=88 \mathrm{~K} \Omega$
Worst Case for R2 Would be $20 \mathrm{~K}-10 \%=18 \mathrm{~K} \Omega$

$$
\begin{gathered}
\mathrm{V} 2=18 \mathrm{~K} / 88 \mathrm{~K}+18 \mathrm{~K} \times 10 \\
\mathrm{~V} 2=18 / 106 \times 10 \\
\mathrm{~V} 2=0.17 \times 10 \\
\mathrm{~V} 2=1.7 \mathrm{~V}(\mathrm{Was} 2.0 \mathrm{~V})
\end{gathered}
$$

V2 Has DROPPED by $0.3 \mathrm{~V}(300 \mathrm{mV})$

BACK TO THE QUESTION.....

The drawing shows an FET circuit biased by R1 and R2. R1 is $80 k \Omega$ and $R 2$ is $20 \mathrm{k} \Omega$. Both resistors are 10% tolerance. The bias voltage might be lower than its design value by a maximum of

A. 180 mV

Worst Case for R1 Would be $80 \mathrm{~K}+10 \%=88 \mathrm{~K} \Omega$
Worst Case for R2 Would be $20 \mathrm{~K}-10 \%=18 \mathrm{~K} \Omega$

The Bias V2 Was DESIGNED to be 2.0V V2 Has DROPPED to 1.7 V (by 300 mV) because of MANUFACTURING TOLERANCE in R1 and R2.
B. 100 mV
C. 300 mV
D. 200 mV .

A LITTLE PUZZLER FOR YOU

26. What current is flowing through the diode shown in the diagram?

A. 11.3 mA .
B. 4.8 mA .
C. 0 mA .
D. 10.6 mA .

Note!
We CANNOT solve this problem using Ohm's Law alone.

There is a NON-LINEAR device in the circuit in the form of a Semiconductor Junction

We must first establish if it is FORWARD or REVERSE BIAS.

The total current through R 1 must be $\mathrm{I}=\mathrm{V} / \mathrm{R}$ or $11.3 / 1000=$ 0.0113 A or 11.3 mA

Kirchhoff's First Law states the Current Arriving at a junction must equal the currents leaving a junction

BACK TO THE QUESTION

26. What current is flowing through the diode shown in the diagram?

A. 11.3 mA .
B. 4.8 mA .
C. 0 mA
D. 10.6 mA .

Remember the Hitchhikers Guide to the Galaxy!

DON'T PANIC!

It's EASY once you can spot the trick in the question!

IS THIS RELEVANT? OH YES!

